If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+10k+16=9
We move all terms to the left:
k^2+10k+16-(9)=0
We add all the numbers together, and all the variables
k^2+10k+7=0
a = 1; b = 10; c = +7;
Δ = b2-4ac
Δ = 102-4·1·7
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-6\sqrt{2}}{2*1}=\frac{-10-6\sqrt{2}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+6\sqrt{2}}{2*1}=\frac{-10+6\sqrt{2}}{2} $
| 9e-7=72-11 | | 7(n+5)=28 | | y=7+30 | | 8x+13=5x+17+x+21 | | –5=b+2 | | 17-g=6 | | 3(j+5)=27 | | 3=4q–13 | | 13=15+y | | 15+2v=–1 | | 41=17+3s | | 1=b+7 | | –10d–2=–12 | | 7+h=G | | (y+8)+8y=17 | | 8x+(3x-22)=18 | | (b²-11b+10)=+(-b²+5) | | -11/5+2/5y=5 | | 35=0.35•w= | | 1/5n(2+3)=50 | | 20=625+10f | | x,8x-10=-34 | | x,3(x-2)=18 | | 7³x-¹⁷=49x | | 4y^2y=5 | | 2(2x*30)/4=20 | | 22+3y=4 | | |m|=13 | | −5+3x=−9 | | −5+3x =−9 | | 40^2+x^2=70^2 | | x+5.8=7 |